Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8104, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582752

RESUMO

GCaMP is a genetically encoded calcium indicator (GECI) widely used in neuroscience research. It measures intracellular Ca2+ level by fluorescence changes as it directly binds to Ca2+. In this process, the effect of this calcium buffer on the intracellular calcium signaling and cell physiology is often not taken into consideration. However, growing evidence from calcium imaging studies shows GCaMP expression under certain conditions can generate aberrant activity, such as seizures. In this study, we examined the effect of GCaMP6 expression in the dentate gyrus (DG) on epileptogenesis. We found that viral expression of GCaMP6s but not GCaMP6f in the DG induces tonic-clonic seizures several weeks after viral injection. Cell-type specific expression of GCaMP6s revealed the granule cells (GCs) as the key player in GCaMP6s-induced epilepsy. Finally, by using slice electrophysiology, we demonstrated that GCaMP6s expression increases neuronal excitability in the GCs. Together, this study highlights the ability of GCaMP6s in DG-associated epileptogenesis.


Assuntos
Cálcio , Neurônios , Humanos , Cálcio/metabolismo , Neurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo , Sinalização do Cálcio , Cálcio da Dieta/metabolismo , Giro Denteado/metabolismo
2.
Bio Protoc ; 13(9): e4664, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37188105

RESUMO

Sleep is a conserved biological process in the animal kingdom. Understanding the neural mechanisms underlying sleep state transitions is a fundamental goal of neurobiology, important for the development of new treatments for insomnia and other sleep-related disorders. Yet, brain circuits controlling this process remain poorly understood. A key technique in sleep research is to monitor in vivo neuronal activity in sleep-related brain regions across different sleep states. These sleep-related regions are usually located deeply in the brain. Here, we describe technical details and protocols for in vivo calcium imaging in the brainstem of sleeping mice. In this system, sleep-related neuronal activity in the ventrolateral medulla (VLM) is measured using simultaneous microendoscopic calcium imaging and electroencephalogram (EEG) recording. By aligning calcium and EEG signals, we demonstrate that VLM glutamatergic neurons display increased activity during the transition from wakefulness to non-rapid eye movement (NREM) sleep. The protocol described here can be applied to study neuronal activity in other deep brain regions involved in REM or NREM sleep.

3.
iScience ; 25(11): 105488, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36405774

RESUMO

Absence seizures, manifested by spike-wave discharges (SWD) in the electroencephalogram, display synchronous reciprocal excitation between the neocortex and thalamus. Recent studies have revealed that inhibitory neurons in the reticular thalamic (RT) nucleus and excitatory thalamocortical (TC) neurons are two subcortical players in generating SWD. However, the signals that drive SWD-related activity remain elusive. Here, we show that SWD predominately occurs during wakefulness in several mouse models of absence epilepsy. In more focused studies of Gnb1 mutant mice, we found that sensory input regulates SWD. Using in vivo recording, we demonstrate that TC cells are activated prior to the onset of SWD and then inhibited during SWD. On the contrary, RT cells are slightly inhibited prior to SWD, but are strongly activated during SWD. Furthermore, chemogenetic activation of TC cells leads to the enhancement of SWD. Together, our results indicate that sensory input can regulate SWD by activating the thalamocortical pathway.

4.
Cell Rep ; 40(11): 111333, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103825

RESUMO

While dysfunction of the medial prefrontal cortex (mPFC) has been implicated in chronic pain, the underlying neural circuits and the contribution of specific cellular populations remain unclear. Using in vivo Ca2+ imaging, we report that in both male and female mice, peripheral nerve injury-induced neuropathic pain causes a marked reduction of vasoactive intestinal polypeptide (VIP)-expressing interneuron activity in the prelimbic area of the mPFC, which contributes to decreased prefrontal cortical outputs. Moreover, prelimbic glutamatergic projections to GABAergic interneurons in the anterior cingulate cortex (ACC) are diminished, leading to loss of cortical-cortical inhibition and increased pyramidal neuron activity in the ACC. Chemogenetic activation of prelimbic VIP interneurons restores neuronal responses in the mPFC-ACC pathway and attenuates pain-like behaviors in mice. Furthermore, restoration of prelimbic outputs to the ACC reverses nerve injury-induced ACC hyperactivation. These findings reveal mPFC circuit changes associated with neuropathic pain and highlight VIP interneurons as potential therapeutic targets for pain treatment.


Assuntos
Neuralgia , Peptídeo Intestinal Vasoativo , Animais , Feminino , Giro do Cíngulo/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Neuralgia/metabolismo , Córtex Pré-Frontal/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
5.
Nat Commun ; 13(1): 4748, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961989

RESUMO

Understanding the neural mechanisms underlying sleep state transitions is a fundamental goal of neurobiology and important for the development of new treatments for insomnia and other sleep disorders. Yet, brain circuits controlling this process remain poorly understood. Here we identify a population of sleep-active glutamatergic neurons in the ventrolateral medulla (VLM) that project to the preoptic area (POA), a prominent sleep-promoting region, in mice. Microendoscopic calcium imaging demonstrate that these VLM glutamatergic neurons display increased activity during the transitions from wakefulness to Non-Rapid Eye Movement (NREM) sleep. Chemogenetic silencing of POA-projecting VLM neurons suppresses NREM sleep, whereas chemogenetic activation of these neurons promotes NREM sleep. Moreover, we show that optogenetic activation of VLM glutamatergic neurons or their projections in the POA initiates NREM sleep in awake mice. Together, our findings uncover an excitatory brainstem-hypothalamic circuit that controls the wake-sleep transitions.


Assuntos
Área Pré-Óptica , Vigília , Animais , Bulbo , Camundongos , Neurônios/fisiologia , Área Pré-Óptica/fisiologia , Sono/fisiologia , Vigília/fisiologia
7.
J Physiol ; 596(10): 1931-1947, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29488635

RESUMO

KEY POINTS: Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. ABSTRACT: Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca2+ independent single large non-quantal ATP release occurred, in contrast to the Ca2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Hipocampo/metabolismo , Estresse Mecânico , Animais , Astrócitos/citologia , Cálcio/metabolismo , Células Cultivadas , Exocitose , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Transmissão Sináptica
8.
J Cell Biol ; 215(3): 369-381, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27799370

RESUMO

Transient receptor potential A1 (TRPA1) is a nonselective cation channel implicated in thermosensation and inflammatory pain. In this study, we show that TRPA1 (activated by allyl isothiocyanate, acrolein, and 4-hydroxynonenal) elevates the intracellular Ca2+ concentration ([Ca2+]i) in dorsal root ganglion (DRG) neurons in the presence and absence of extracellular Ca2+ Pharmacological and immunocytochemical analyses revealed the presence of TRPA1 channels both on the plasma membrane and in endolysosomes. Confocal line-scan imaging demonstrated Ca2+ signals elicited from individual endolysosomes ("lysosome Ca2+ sparks") by TRPA1 activation. In physiological solutions, the TRPA1-mediated endolysosomal Ca2+ release contributed to ∼40% of the overall [Ca2+]i rise and directly triggered vesicle exocytosis and calcitonin gene-related peptide release, which greatly enhanced the excitability of DRG neurons. Thus, in addition to working via Ca2+ influx, TRPA1 channels trigger vesicle release in sensory neurons by releasing Ca2+ from lysosome-like organelles.


Assuntos
Cálcio/metabolismo , Gânglios Espinais/metabolismo , Espaço Intracelular/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Acroleína , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Exocitose , Hiperalgesia/metabolismo , Ativação do Canal Iônico , Isotiocianatos , Masculino , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Soluções , Canal de Cátion TRPA1
9.
Analyst ; 140(11): 3840-5, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25651802

RESUMO

Schizophrenia is a severely devastating mental disorder, the pathological process of which is proposed to be associated with the dysfunction of dopaminergic transmission. Our previous results have demonstrated slower kinetics of transmitter release (glutamate release in hippocampus and norepinephrine release in adrenal slice) in a schizophrenia model, dysbindin null-sandy mice. However, whether dopaminergic transmission in the nigrostriatal pathway contributes to the pathology of dysbindin-/- mice remains unknown. Here, we have provided a step-by-step protocol to be applied in the in vivo amperometric recording of dopamine (DA) release from the mouse striatum evoked by an action potential (AP) pattern. With this protocol, AP pattern-dependent DA release was recorded from dysbindin-/- mice striatum in vivo. On combining amperometric recording in slices and electrophysiology, we found that in dysbindin-/- mice, (1) presynaptically, AP-pattern dependent dopamine overflow and uptake were intact in vivo; (2) the recycling of the dopamine vesicle pool remained unchanged. (3) Postsynaptically, the excitability of medium spiny neuron (MSN) was also normal, as revealed by patch-clamp recordings in striatal slices. Taken together, in contrast to reduced norepinephrine release in adrenal chromaffin cells, the dopaminergic transmission remains unchanged in the nigrostriatal pathway in dysbindin-/- mice, providing a new insight into the functions of the schizophrenia susceptibility gene dysbindin.


Assuntos
Dopamina/metabolismo , Eletroquímica/métodos , Neostriado/metabolismo , Esquizofrenia/metabolismo , Animais , Transporte Biológico , Modelos Animais de Doenças , Disbindina , Proteínas Associadas à Distrofina/deficiência , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/patologia , Neostriado/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia
10.
Diabetologia ; 58(2): 324-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25381556

RESUMO

AIMS/HYPOTHESIS: Insulin is a key metabolic regulator in health and diabetes. In pancreatic beta cells, insulin release is regulated by the major second messengers Ca(2+) and cAMP: exocytosis is triggered by Ca(2+) and mediated by the cAMP/protein kinase A (PKA) signalling pathway. However, the causal link between these two processes in primary beta cells remains undefined. METHODS: Time-resolved confocal imaging of fluorescence resonance energy transfer signals was performed to visualise PKA activity, and combined membrane capacitance recordings were used to monitor insulin secretion from patch-clamped rat beta cells. RESULTS: Membrane depolarisation-induced Ca(2+) influx caused an increase in cytosolic PKA activity via activating a Ca(2+)-sensitive adenylyl cyclase 8 (ADCY8) subpool. Glucose stimulation triggered coupled Ca(2+) oscillations and PKA activation. ADCY8 knockdown significantly reduced the level of depolarisation-evoked PKA activation and impaired replenishment of the readily releasable vesicle pool. Pharmacological inhibition of PKA by two inhibitors reduced depolarisation-induced PKA activation to a similar extent and reduced the capacity for sustained vesicle exocytosis and insulin release. CONCLUSIONS/INTERPRETATION: Our findings suggest that depolarisation-induced Ca(2+) influx plays dual roles in regulating exocytosis in rat pancreatic beta cells by triggering vesicle fusion and replenishing the vesicle pool to support sustained insulin release. Therefore, Ca(2+) influx may be important for glucose-stimulated insulin secretion.


Assuntos
Adenilil Ciclases/metabolismo , Cálcio/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 111(44): 15804-9, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331880

RESUMO

Embryonic stem cell-based therapies exhibit great potential for the treatment of Parkinson's disease (PD) because they can significantly rescue PD-like behaviors. However, whether the transplanted cells themselves release dopamine in vivo remains elusive. We and others have recently induced human embryonic stem cells into primitive neural stem cells (pNSCs) that are self-renewable for massive/transplantable production and can efficiently differentiate into dopamine-like neurons (pNSC-DAn) in culture. Here, we showed that after the striatal transplantation of pNSC-DAn, (i) pNSC-DAn retained tyrosine hydroxylase expression and reduced PD-like asymmetric rotation; (ii) depolarization-evoked dopamine release and reuptake were significantly rescued in the striatum both in vitro (brain slices) and in vivo, as determined jointly by microdialysis-based HPLC and electrochemical carbon fiber electrodes; and (iii) the rescued dopamine was released directly from the grafted pNSC-DAn (and not from injured original cells). Thus, pNSC-DAn grafts release and reuptake dopamine in the striatum in vivo and alleviate PD symptoms in rats, providing proof-of-concept for human clinical translation.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Células-Tronco Neurais/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Corpo Estriado/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Xenoenxertos , Humanos , Masculino , Células-Tronco Neurais/transplante , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
12.
J Physiol ; 592(16): 3559-76, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24973407

RESUMO

Striatal dopamine (DA) is critically involved in major brain functions such as motor control and deficits such as Parkinson's disease. DA is released following stimulation by two pathways: the nigrostriatal pathway and the cholinergic interneuron (ChI) pathway. The timing of synaptic transmission is critical in striatal circuits, because millisecond latency changes can reverse synaptic plasticity from long-term potentiation to long-term depression in a DA-dependent manner. Here, we determined the temporal components of ChI-driven DA release in striatal slices from optogenetic ChAT-ChR2-EYFP mice. After a light stimulus at room temperature, ChIs fired an action potential with a delay of 2.8 ms. The subsequent DA release mediated by nicotinic acetylcholine (ACh) receptors had a total latency of 17.8 ms, comprising 7.0 ms for cholinergic transmission and 10.8 ms for the downstream terminal DA release. Similar latencies of DA release were also found in striatal slices from wild-type mice. The latency of ChI-driven DA release was regulated by inhibiting the presynaptic vesicular ACh release. Moreover, we describe the time course of recovery of DA release via the two pathways and that of vesicle replenishment in DA terminals. Our work provides an example of unravelling the temporal building blocks during fundamental synaptic terminal-terminal transmission in motor regulation.


Assuntos
Potenciais de Ação , Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Tempo de Reação , Transmissão Sináptica , Acetilcolina/metabolismo , Animais , Neurônios Colinérgicos/fisiologia , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nicotínicos/metabolismo , Vesículas Sinápticas/metabolismo
13.
Nat Commun ; 5: 3925, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24968237

RESUMO

Striatal dopamine (DA) release can be independently triggered not only by action potentials (APs) in dopaminergic axons but also APs in cholinergic interneurons (ChIs). Nicotine causes addiction by modulating DA release, but with paradoxical findings. Here, we investigate how physiologically relevant levels of nicotine modulate striatal DA release. The optogenetic stimulation of ChIs elicits DA release, which is potently inhibited by nicotine with an IC50 of 28 nM in the dorsal striatum slice. This ChI-driven DA release is predominantly mediated by α6ß2* nAChRs. Local electrical stimulus (Estim) activates both dopaminergic axons and ChIs. Nicotine does not affect the AP(DA)-dependent DA release (AP(DA), AP of dopaminergic axon). During burst Estim, nicotine permits the facilitation of DA release by prevention of DA depletion. Our work indicates that cholinergic stimulation-induced DA release is profoundly modulated by physiologically relevant levels of nicotine and resolves the paradoxical observation of nicotine's effects on striatal DA release.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Nicotina/metabolismo , Animais , Corpo Estriado/fisiologia , Estimulação Elétrica , Técnicas In Vitro , Camundongos , Camundongos Transgênicos
14.
J Neurosci ; 31(29): 10593-601, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21775603

RESUMO

Astrocytes release a variety of signaling molecules including glutamate, D-serine, and ATP in a regulated manner. Although the functions of these molecules, from regulating synaptic transmission to controlling specific behavior, are well documented, the identity of their cellular compartment(s) is still unclear. Here we set out to study vesicular exocytosis and glutamate release in mouse hippocampal astrocytes. We found that small vesicles and lysosomes coexisted in the same freshly isolated or cultured astrocytes. Both small vesicles and lysosome fused with the plasma membrane in the same astrocytes in a Ca(2+)-regulated manner, although small vesicles were exocytosed more efficiently than lysosomes. Blockade of the vesicle glutamate transporter or cleavage of synaptobrevin 2 and cellubrevin (both are vesicle-associated membrane proteins) with a clostridial toxin greatly inhibited glutamate release from astrocytes, while lysosome exocytosis remained intact. Thus, both small vesicles and lysosomes contribute to Ca(2+)-dependent vesicular exocytosis, and small vesicles support glutamate release from astrocytes.


Assuntos
Astrócitos/ultraestrutura , Cálcio/metabolismo , Exocitose/efeitos dos fármacos , Lisossomos/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Exocitose/fisiologia , Proteína Glial Fibrilar Ácida , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Neurotoxinas/farmacologia , Receptores de Glutamato/genética , Toxina Tetânica/farmacologia , Transfecção/métodos , Vesículas Transportadoras/efeitos dos fármacos , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...